IAME	DATE	CLASS
Chapter 7		

Use with Section 3

REINFORCEMENT

• Newton's Third Law

Complete the table by naming the action and reaction forces in the following examples.

Example	Action Force	Reaction Force
1. A flying bird		
2. Two bumper cars collide		
3. Holding your hand out the window of moving car		
4. Walking		
5. Touching your finger to your nose		

Supply the missing word or phrase in the following statements.

- 6. Newton's third law states, "For every action, there is an equal but ______
- 7. There is no ______ in time between the action and the reaction.
- **8.** One reason why it's often easy to miss an action-reaction pair is because of the ______ of one of the objects.
- 9. Action-reaction forces are always the same ______ but are in opposite
- **10.** When you swim in water, your arms push the water ______. The water reacts by pushing ______ on your arms causing your body to accelerate ______.

Answer the following questions in complete sentences.

11. How could the action force of a canoe moving through water be increased?

- **12.** If there were no action-reaction forces in effect, describe what would happen as you walk down a sidewalk.
- 13. How does Newton's third law explain the forces involved when a car hits a concrete barricade?